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Abstract

This paper examines how battery storage ownership structure affects wholesale

electricity market outcomes by shaping operational incentives. Using a dynamic dis-

patch model calibrated to Texas data, I show how transmission congestion creates

conditions in which batteries operated jointly with a renewable plant are used strate-

gically to increase the value of renewable production. The strength of this incentive

depends on supply elasticity and the timing of renewable production. Because of

this strategic behavior, co-owned batteries reduce consumer surplus gains by ap-

proximately 7 percent relative to standalone batteries in markets where strategic in-

centives arise, but earn roughly 76 percent higher profits. Market conditions do not

generate enough profits for battery investment to be viable, regardless of ownership.

However, under a uniform subsidy policy, co-ownership’s higher profitability makes

more batteries viable at moderate subsidy rates, but those becoming profitable first

tend to generate lower consumer surplus. (JEL L94, Q40, Q42, Q48, Q55).
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1 Introduction

A central problem in economics is how to design policies that encourage investment in

projects which, despite generating positive system-wide benefits, are not privately prof-

itable under prevailing market conditions. Electricity storage exemplifies this problem in

deregulated wholesale electricity markets. Electricity grids worldwide are undergoing a

rapid decarbonization process in which renewable sources such as wind and solar play

a central role. Yet their intrinsic intermittency complicates integration into wholesale

markets and exposes the grid to reliability risks. Battery energy storage systems (BESS)

offer a flexible solution to manage intermittency—charging during off-peak hours, when

renewable output is abundant and prices are low, and discharging during peak hours,

when renewable output falls and prices rise. Yet despite this role, batteries require sub-

stantial upfront investment and, under current market conditions, are rarely profitable

on their own. In the United States, for example, by the end of 2024 installed utility-scale

storage accounted for only about 2 percent of operating renewable generation capacity.

To address this gap, subsidies have been introduced at both the federal and state level.

Federal support, initially restricted to batteries co-owned with renewables and charged

primarily with electricity from the plant, has only recently been extended to standalone

projects. State programs are more heterogeneous, with some covering both ownership

types and others limited to co-owned facilities.

My paper answers the question of which battery ownership structure–co-ownership

with a renewable plant or standalone–is the most desirable. To investigate this question,

I analyze how ownership shapes operational incentives and, through them, market out-

comes. Battery operations affect electricity prices. Charging raises prices while discharg-

ing lowers them, with the magnitude of these effects depending on supply elasticity. A

standalone operator maximizes arbitrage profits by exploiting price differentials across

periods. To preserve these differentials, standalone operators target periods when sup-

ply is relatively more elastic to trade electricity, as this minimizes the price variations

induced by battery operations. By contrast, a co-owner internalizes how battery oper-

ations affect renewable revenues. A co-owner may strategically charge during off-peak
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periods with less elastic supply to induce larger price increases. This strategy is prof-

itable whenever the additional renewable revenues from charging during these periods

exceeds the additional storage costs relative to charging during periods with more elastic

supply. The strength of this incentive depends crucially on contemporaneous renewable

output, as higher production amplifies the revenue gains from price increases.

To study these dynamics, I first develop an illustrative theoretical model of battery

utilization, and then I simulate an extended version calibrated to data from the Texas

wholesale electricity market. This framework allows me to assess whether the market

conditions that generate different incentives arise in practice and what their implications

are for prices, storage profitability, and consumer surplus.

Using the illustrative model, I show that the divergence of operational incentives

across different ownership structures can be explained by transmission congestion, sup-

ply elasticity, and the timing of renewable production. The model features four periods

within a day–off-peak and peak periods, each occurring under both congested and un-

congested conditions. During uncongested periods, the market operates as a fully inte-

grated system in which all generating resources compete to serve market-wide demand.

When transmission congestion occurs, the grid fragments into multiple local markets,

each containing a smaller number of generators serving a fraction of total demand. The

key distinction is that within off-peak hours, supply is more elastic during uncongested

periods, and the same holds for peak hours.

While standalone batteries target uncongested periods for both charging and dis-

charging to minimize price impacts, transmission line congestion can create market con-

ditions under which co-owned batteries find it profitable to charge during congested

off-peak hours. During uncongested periods, more elastic supply minimizes price varia-

tions from battery operations. Co-owned batteries share this preference for uncongested

discharging, as price reductions would erode both battery and contemporaneous renew-

able sales revenues. However, when renewable output is particularly abundant during

congested off-peak hours, the less elastic supply amplifies the price increase from charg-

ing. This generates renewable revenue gains that can exceed the higher storage costs,

making congested charging profitable for co-owners.
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I assess whether these theoretical conditions for divergent operational incentives ac-

tually occur by simulating a day-long dynamic dispatch model calibrated to Texas Real-

Time Market data from January to December 2021. For each node where a renewable

plant is operating, I exogenously place a hypothetical battery and solve the model un-

der both ownership structures, obtaining the optimal dispatch and resulting equilibrium

prices. Battery operators make charge and discharge decisions every 15 minutes. Fol-

lowing the structure of the illustrative model, operators behave as price-takers during

uncongested periods but act strategically during congested periods when local markets

form and battery operations can influence prices. I use node-level Locational Marginal

Prices (LMPs) to identify congested periods and, together with S&P Capital IQ data on

plant locations, to define the set of plants operating in each local market when transmis-

sion line capacity binds.

The simulations yield four main findings. First, ownership does not substantially al-

ter overall battery utilization. Both co-owned and standalone batteries complete approx-

imately 1.65 charge-discharge cycles per day on average, trading similar total quantities

of electricity. This similarity masks important differences in when batteries trade, which

drive divergent market outcomes.

Second, while both ownership types predominantly trade during uncongested pe-

riods, selling roughly 98 percent of electricity during uncongested peak hours and pur-

chasing around 76 percent during uncongested off-peak hours, co-owned batteries strate-

gically reallocate approximately 2 percentage points of their charging to congested off-

peak periods. This reallocation occurs in periods when transmission congestion creates

local markets with inelastic supply. Under these conditions, co-owned operators use

batteries more intensively than standalone operators because the induced price increase

from charging raises renewable revenues by more than it increases storage costs. Co-

owned batteries use approximately 5 percent more of their rated power than standalone

units when renewable output is low; this gap widens to about 7 percent when renewable

production is high.

Third, these operational differences generate divergent effects on consumer surplus

and profitability. Co-ownership yields 7 percent lower consumer surplus gains but 76
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percent higher profits in markets where strategic incentives arise. Batteries increase con-

sumer surplus by reducing average electricity costs across the day. Both ownership types

charge primarily during uncongested off-peak hours and discharge during uncongested

peak hours. Because supply is more elastic and demand is lower during off-peak periods,

the increase in electricity costs from charging is smaller than the reduction in electricity

costs from discharging during peak hours. Over a 20-year lifetime, batteries increase con-

sumer surplus by approximately $200k to $500k per MWh of storage capacity. However,

co-owned batteries deliver lower gains because charging during congested periods with

a less elastic supply induces larger price increases, raising electricity costs more than un-

der standalone operation. Profitability follows the opposite pattern. Co-owned batteries

capture additional renewable revenues from strategic operations, whereas standalone

batteries earn profits solely from arbitrage.

Finally, while neither ownership regime is privately viable at assumed capital costs

of $250k per MWh of storage capacity, co-owned batteries require substantially lower

uniform subsidies to become profitable. Under a uniform subsidy policy, the first co-

owned battery becomes profitable with a subsidy covering 45 percent of capital costs,

compared to 55 percent for standalone batteries, because co-ownership allows operators

to internalize renewable revenue gains from strategic utilization. This gap persists as

subsidy rates increase. Only at approximately 85 percent does the number of profitable

batteries equalize across ownership types. However, this earlier profitability comes at a

cost: the co-owned batteries incentivized to enter first tend to be those generating the

lowest consumer surplus.

This paper makes two main contributions. First, it extends the literature on stor-

age investment in wholesale electricity markets by showing how ownership structure

shapes operational incentives and the value of storage projects. Prior research has

shown how market structure–such as market power in storage or vertical integration

with dispatchable generation–affects storage operation and market outcomes (Andrés-

Cerezo and Fabra (2023b)). Other studies examine how batteries influence nodal prices

(Kirkpatrick (2025)), and the value of standalone storage projects in wholesale electricity

markets by assuming that the operator can behave either as a price-taker (Butters et al.
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(2021)) or as a strategic player (Karaduman (2020)). Building on work that shows renew-

ables and storage can be either complements or substitutes depending on market con-

ditions (Andrés-Cerezo and Fabra (2023a)), I focus on storage vertically integrated with

non-dispatchable renewables, where the combined firm can switch between strategic

and price-taking behavior depending on local congestion. This specification highlights

that co-ownership confers operational control on otherwise non-dispatchable generators,

enabling them to act strategically. Ignoring ownership structure can therefore lead to

biased estimates of both market effects and project profitability.

Second, it contributes to the literature on market power in deregulated electricity mar-

kets by identifying a novel channel operating through storage and its interaction with

renewable generation. Existing studies show that market size and transmission con-

straints shape firms’ ability to exercise market power (Woerman (2019)), and that incum-

bents may strategically manipulate supply to influence prices (Borenstein et al. (2002);

Mansur (2008); McRae and Wolak (2019); Wolfram (1999)). Some studies examine how

ownership of generators with different technologies–such as hydro and thermal plants–

allows firms to intertemporally control supply and influence prices (Bushnell (2003)).

I develop a framework in which batteries co-owned with non-dispatchable renewables

use storage not only to arbitrage inter-period prices but also to enhance renewable rev-

enues during charging periods. By showing how congestion creates localized markets

in which a single battery can move prices, the paper identifies a previously overlooked

mechanism through which storage and renewables jointly exercise market power.

The remainder of the paper is organized as follows. Section 2 describes the institu-

tional context of Texas electricity market. Section 3 develops an illustrative model to

show how transmission congestion, supply elasticity, and the timing of renewable out-

put generate divergent incentives under co-ownership and standalone operation. Section

4 presents the empirical framework, a day-long dynamic dispatch model calibrated to

ERCOT data, and explains how congestion and local market definition are incorporated.

Section 5 reports the results, focusing on operational incentives, consumer surplus, and

profitability across ownership structures. Section 6 concludes by discussing the policy

implications of ownership for storage subsidies and market design.
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2 Institutional Settings

In the following subsections, I describe the institutional features of the Texas electricity

market that provide the foundation for the illustrative and empirical models.

Texas Electricity Market

Operated by the Electric Reliability Council of Texas (ERCOT), the independent system

operator (ISO), the Texas wholesale electricity market is largely isolated from the rest of

the United States grid. As a result, all electricity generated within the state must also be

consumed there, and imports and exports are null. ERCOT coordinates the operation of

more than 700 generating units that supply electricity to over 26 million consumers, and

annual wholesale transactions exceed $40 billion.

The market design in Texas is energy-only, meaning there is no separate capacity mar-

ket. ERCOT’s mandate is to ensure that electricity demand is met at every moment while

minimizing system costs and maintaining reliability. To achieve this, ERCOT operates

a Security-Constrained Economic Dispatch (SCED) every five minutes in the Real-Time

Market (RTM). The SCED uses real-time load telemetry together with the aggregated

offer curves submitted by generators to balance supply and demand and to determine

the market-clearing price for electricity.

Transmission Line Congestions and Locational Market Definition

Transmission congestion is a defining feature of the Texas electricity market and plays a

central role in determining prices. Electricity must be moved across transmission lines

because generation and demand are not sited at the same location. While this spatial

mismatch exists for all technologies, it is particularly acute for renewables: demand is

concentrated in large urban centers, whereas most wind and solar plants are sited in

remote areas (Figure 1a). Transmission lines have finite capacity: technical limits on volt-

age and frequency, as well as thermal constraints, prevent them from carrying unlimited

power. Sudden shocks – such as a plant outage, a rapid load increase, or a surge in
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(a) Power plants and load centers in
Texas

(b) Percentage of 15-minutes periods with at
least one congested transmission line, by season.

Figure 1: Transmission congestions in Texas

renewable output – can stress the grid and reduce the amount of power that can safely

flow. Moreover, moving electricity generates heat within the line, and if temperatures

rise too high the line risks failure. High ambient temperatures exacerbate this problem,

lowering the effective capacity of lines and making congestion particularly frequent on

hot summer afternoons. Because flows are interdependent across the network, conges-

tion on one path often redirects power and overloads other lines, producing system-wide

constraints. As a result, congestion is pervasive throughout the year, binding in more

than half of all 15-minutes intervals in 2021 (Figure 1b).

ERCOT addresses these constraints by implementing Locational Marginal Pricing,

which assigns a price, the Locational Marginal Price (LMP), to each node that reflect the

marginal cost of serving an additional megawatt at that location. When no transmission

line is congested, the ERCOT market functions as a single integrated system. In this

case, the system operator collects all supply offers from generators and arranges them in

increasing order of their submitted prices, forming the aggregate supply curve known as

the merit order. The market price is then set by the intersection of this supply curve with

demand, equal to the price of the marginal generator. Because electricity can flow freely

across the grid, the location of the marginal generator is irrelevant, and the price applies
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uniformly at every node. There is a single Locational Marginal Price (LMP), reflecting

the marginal cost of producing an additional megawatt from the system-wide marginal

unit (Panel 2a).

When transmission lines become congested, ERCOT no longer clears the market at

a single system-wide price. Instead, each node is assigned its own Locational Marginal

Price (LMP), which reflects the marginal cost of supplying an additional megawatt at

that location.

To illustrate how this works, consider a simplified example where the market is

represented by just two nodes. One node is a load center with a relatively expensive local

generator, while the other hosts a cheaper generator. The two nodes are connected by a

transmission line of limited capacity. If the cheaper generator has sufficient capacity to

cover the entire load and the transmission line capacity does not bind, then all demand is

met by the cheap unit and the LMP is identical across both nodes. Once the line becomes

congested before all demand is served, however, the system operator must dispatch the

more expensive local generator at the load node. At this point, the market separates

into two price zones. The LMP at the cheap generator node remains low, reflecting the

marginal cost of the unit whose capacity cannot be fully exported. The LMP at the

load node is higher, reflecting the marginal cost of the expensive generator that must be

dispatched to meet residual demand (Panel 2b).

Renewable Plants Location

Renewable production is shaped both by plant location and by the inherent variability

of their resources. Most wind farms are concentrated in the Panhandle, West Texas, and

the Coastal Bend–areas with the strongest wind resources in the state. Solar plants are

more widely distributed across West and West-Central Texas, where solar irradiation

is highest. Production also varies systematically over the day. Wind output typically

peaks at night, when temperatures are lower, and declines around midday as higher

temperatures reduce wind speeds. By contrast, solar output peaks around midday and

is entirely absent at night.
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(a) Uncongested Market (The data in the fig-
ure are from Jenuary 2, 2021, 11:15)

(b) Congested Market (The data in the fig-
ure are from April 5, 2021, 12:45)

Figure 2: Locational Marginal Pricing in Texas Electricity Market

The geographic distribution of renewable plants not only determines their production

potential but also shapes the set of competitors they face when congestion occurs. Plants

located near load centers typically share local markets with thermal generators, whereas

those in remote areas are often grouped with other renewables alone. This difference

directly affects the shape of the local supply curve. In the former case, the curve is

generally more inelastic, since thermal generators submit step-shaped offers that reflect

rising costs as capacity is utilized more intensively. In the latter, the curve is nearly

flat, as renewable plants bid at constant marginal cost, making residual supply close to

perfectly elastic under congestion.

Battery Energy Storage Systems in Electricity Markets

Grid capacity investments in storage systems are projected to rank second only to solar

in Texas. Almost all planned projects are Battery Energy Storage Systems (BESS) based

on lithium-ion technology. A BESS is characterized by four parameters: (i) its power ca-

pacity P (MW), the maximum instantaneous rate of charge or discharge; (ii) its duration
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h (hours), the length of time it can sustain rated power; (iii) its energy capacity E (MWh),

defined as the product of power and duration; and (iv) by its round-trip efficiency γ2,

the fraction of energy retained over a complete charge-discharge cycle.

Lithium-ion batteries combine high power capacity, moderate duration, and relatively

high efficiency, making them well suited for arbitrage in wholesale electricity markets.

At the beginning of 2021 only 20 batteries were connected to the Texas grid, with an

average power capacity of 12 MW. In practice, these projects were almost exclusively

deployed in ancillary-service markets–where grid operators procure services such as

frequency regulation and operating reserves to maintain system reliability—and where

revenues were initially attractive. However, “total ancillary demand is small and can be

saturated quickly by additional capacity” (Sackler, 2019). Industry forecasts therefore indicate

that the bulk of storage activity will take place in the energy market. ERCOT operates

two sequential markets: a Day-Ahead Market (DAM), where participants can lock in

financial positions by committing to buy or sell electricity 24 hours in advance, and a

Real-Time Market (RTM), which balances actual supply and demand every five minutes

based on real-time conditions. Batteries can participate in either market, but the RTM

offers greater arbitrage opportunities due to its higher price variability, making it the

expected primary venue for storage operations.

3 Illustrative Model

In this section, I develop an illustrative model to show how transmission congestion,

supply elasticity, and renewable production shape battery operational incentives under

the two ownership structures—co-ownership and standalone. The model features a sin-

gle day with four periods: uncongested off-peak, congested off-peak, uncongested peak,

and congested peak. A battery operator must fully charge the battery’s capacity b during

off-peak periods and discharge it during peak periods, when prices are higher. The op-

erator’s decision is how to allocate charging across congested and uncongested off-peak

periods, and similarly for discharging across congested and uncongested peak periods.

The key distinction in the model is between uncongested and congested periods.
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During uncongested periods, the electricity market operates as a fully integrated system.

The battery faces market-wide demand and competes with the full set of generators

across the grid. By contrast, when transmission lines become congested, the battery

operates in a local market where demand is limited to local consumption plus whatever

electricity can flow through the constrained transmission lines. This fragmentation also

reduces the number of competing generators and alters the shape of the supply curve

the battery faces.

In each period t, where t ∈ {off-peak, peak} denotes the time of day, and under

transmission status m ∈ {u, c}, where u indicates uncongested transmission lines and c

indicates congested ones, the supply curve St,m is modeled as a piecewise linear function

with three segments. The initial horizontal segment at price 0 reflects exogenous renew-

able output, which has zero marginal cost. The remaining two segments, with slopes χl

and χh, where χl < χh, represent the supply curve of traditional (thermal) generators.

The key feature is that in off-peak periods, demand intersects the supply curve along

the segment with slope χl, while in peak periods, demand intersects along the steeper

segment with slope χh. The value of the slope at the intersection depends on the conges-

tion status m. In each period t, transmission congestion makes supply curves steeper at

the relevant intersection points, i.e. χt,c > χt,u.

Figure 3 illustrates the incentives that govern battery utilization under the two own-

ership structures. A battery that arbitrages price differentials buys electricity during the

off-peak period and sells it in the peak period. Since it only stores energy produced by

other resources, charging bo,m units during off-peak periods shifts demand from Do,m to

D′
o,m, raising the price from po,m to p′o,m. When the battery discharges in the peak period,

I assume that the stored electricity is offered at a price of 0, which allows me to model

battery discharging as a negative demand shift. Demand moves from Dp,m to D′
p,m, and

the price decreases from pp,m to p′p,m.

A standalone operator trades electricity to maximize arbitrage profits exclusively.

Consider an operator who has already purchased bo,u units during uncongested off-peak

periods and bo,c units during congested off-peak periods, and must now decide when to

purchase the final unit to reach capacity b. The operator buys this last unit in the off-
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Figure 3: Illustrative Model
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peak period with the lowest marginal cost. Charging under market transmission status

m would increase the price by χo,m up to p′′o,m. This increase costs in two ways: the bo,m

units already purchased become more expensive by χo,m (area B1m), and the additional

unit itself must be purchased at p′′o,m (area B2m). Therefore, the operator buys the unit in

the uncongested period if B1u + B2u < B1c + B2c.

An analogous logic applies to discharging. Discharging under market transmission

status m would decrease the price by χp,m to p′′p,m. Discharging affects revenues in two

opposing ways: it generates revenue p′′p,m from selling the additional unit (area Fm), but

reduces revenues on the bp,m units already sold by χp,m (area Cm). The net marginal

revenue from discharging is therefore Fm − Cm. The operator sells the unit in the uncon-

gested period if Fu − Cu > Fc − Cc.

A co-owned battery operator faces different incentives because it maximizes joint

profits from both arbitrage and renewable sales. Unlike a standalone operator, the

co-owner internalizes how battery operations affect renewable revenues through price

changes.

When charging, the co-owner’s marginal cost under market transmission status m

is (B1m + B2m)− Am, where Am = χo,m · Ro,m represents the additional renewable rev-

enues from the price increase. The timing of renewable production and the slope of

the supply curve can generate substantially different incentives under co-ownership. If

renewable output is particularly high during congested off-peak hours, a co-owner may

prefer charging during congestion despite higher storage costs variation. Specifically, the

co-owner charges during congested periods when Ac − Au > (B1c + B2c)− (B1u + B2u)–

that is, when the incremental renewable revenue gain from congestion exceeds the addi-

tional storage cost.

When discharging, the co-owner’s net marginal revenue is (Fm − Cm) − Em, where

Em = χp,m · Rp,m represents the erosion of renewable revenues from the price reduction

(areas Eu and Ec). Because χp,c > χp,u, discharging during congested peak periods

erodes renewable revenues more than during uncongested periods, giving co-owners an

even stronger incentive than standalone operators to avoid congested peak periods.
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4 Empirical Strategy

To examine whether the theoretical conditions that yield divergent incentives for battery

operation under the two ownership structures are observed in practice, I simulate a

dynamic battery utilization model under two scenarios: co-ownership with a renewable

plant and standalone ownership. In each case, I place a battery at the node of an existing

renewable facility in the grid, abstracting from the entry decision, and I compute the

optimal dispatch decision of its operator. This exercise is conducted for every renewable

plant operating in ERCOT.

The empirical exercise allows me to quantify the implications of ownership for a

range of market outcomes–including prices, consumer surplus, and battery profitability–

conditional on market conditions. Moreover, by simulating the model for batteries

paired with every renewable plant operating in the market, I can also assess how plant

characteristics–such as location and technology–influence the magnitude and direction

of these ownership effects.

Empirical Model

In the battery-utilization model I develop, the operator participates in the real-time mar-

ket and utilizes the battery to arbitrage electricity price differentials. The time horizon

faced by the operator is a day. This choice reflects empirical evidence on battery utiliza-

tion patterns. Karaduman (2020) finds that batteries complete approximately 1.5 cycles

per day in simulation and 1.7 cycles in observed data, suggesting that storage is predom-

inantly used to exploit intraday price differentials rather than arbitrage opportunities

over longer periods. At the beginning of every fifteen-minute period, it has to decide

how much electricity to buy (charge) or sell (discharge).

The problem is inherently dynamic because each decision is constrained by the bat-

tery’s state of charge at the beginning of the period. At t = 0, I assume that battery

j starts empty (c0,j = 0), and I impose that the state of charge is again empty at the

end of the day (c96,j = 0). Along with the state of charge, the operator’s decision de-

pends on electricity demand, supply, and the status of the transmission network. Gross
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demand for electiricty in each period, D̄t,m, is assumed to be perfectly inelastic. The

reason for this assumption is that the demand side in deregulated wholesale electricity

market is represented by retailer providers, which buy electricity to distribute to end-

use consumers. While the price paid by the retailers is determined every 15 minutes,

the price paid by consumers is represented by fixed rates, which in the short term are

disconnected from wholesale prices.

The supply function, St,m(pt,m), is increasing in the electricity price. While in the em-

pirical estimation I model supply from all technologies jointly, in the theoretical frame-

work presented here I treat renewable and thermal generation separately. Renewable

output, R̄t, is taken as exogenous and non-dispatchable: all electricity produced by wind

and solar plants must be supplied to the market.

Thermal generators cover this residual demand, and their behavior is summarized by

an increasing supply function Sthermal
t,m (pt,m). A key simplifying assumption of the model

is that thermal units do not engage in strategic interaction with the battery operator.

Instead, they are treated as residual suppliers that adjust output as needed to satisfy net

demand at the prevailing price. In other words, thermal generators are not assumed to

best respond to the batterys charging and discharging decisions.

At the beginning of each period, the operator observes the status of the transmis-

sion network through the congestion indicator Mt, which equals one when lines are

congested and zero when the market is fully integrated. In an uncongested grid, every

plant operating in the market competes with the full set of generators to serve market-

wide load. Each plant produces just a small fraction of the total electricity demanded.

Plants can hardly exercise market power in this situation and the market is assumed

to be perfectly competitive. In these conditions the battery operator is assumed not to

internalize the effect on the electricity price induced by its operations. On the other

hand, when lines are congested the grid splits into multiple local markets. Each plant

faces only a handful of competitors to serve a share of total load. With fewer competi-

tors and a smaller load to cover, a plant’s opportunity to act strategically grows. When

Mt = 1, I assume that the battery operator is a strategic player and internalizes the effect

of charging and discharging the battery on the local price.
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When choosing bt,j, the operator forms expectations about future electricity prices,

with uncertainty arising solely from future renewable production. The problem of oper-

ator j at time t can therefore be expressed by the following Bellman equation, where the

indicator 1j=co distinguishes between a co-owned and a standalone battery operator.

V(ct, t) = max
bt∈B(ct)

(
pt,m(bt) ·Mt + pt,m · (1−Mt)

)
·
(

1j=coR̄t,j + bt

)
+ βER̄

[
V(ct+1, t + 1)

]
(1)

s.t.

E − ct,j

γ
≥ bt,j ≥ −γct,j (2)

1
4

P ≥ |bj,t| (3)

ct+1 = ct − γ bt · 1b<0 −
bt

γ
· 1b>0 (4)

Equation (1) states that, in each period t, operator j chooses the energy bt,j (in MWh)

to inject into or withdraw from the grid, with bt,j < 0 indicating charging. The decision

is constrained by the technical specifications of the battery: its power capacity P (MW),

its duration h (hours), its energy capacity E (MWh), and by its round-trip efficiency γ2.

Within this framework, the first inequality in equation (1) ensures that charging does not

exceed the remaining energy capacity: the left-hand side,
E−ct,j

γ , limits purchases once

charging losses are considered, while the right-hand side, −γct,j, prevents discharging

more energy than is stored, net of discharging losses. The second constraint caps instan-

taneous power flow at the rating P, expressed in MWh since each interval is one quarter

of an hour. Finally, the last equation specifies the law of motion governing the batterys

state of charge.

In electricity markets, the operator must constantly balance inelastic gross demand

D̄t with supply and with the electricity traded by the battery:

D̄t,m = bj,t + R̄t,m + Sthermal
t,m (pt,m) (5)
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The thermal supply function St,m(p) is strictly increasing in price (hence invertible).

This is standard in electricity markets: higher prices bring progressively more (and more

expensive) thermal units online along the merit order, so total thermal output rises with

p. Prices can be written accordingly as

pt,m(Qt) = Sthermal−1

t,m (Qt) = Sthermal−1

t,m (D̄t,m − R̄t,m − bj,t), (6)

where Qt denotes total thermal production. The corresponding first-order condition

with respect to bt can be written as

Mt

[
pt,m − 1

ϵs

(
R̄t,j1j=co + bt

)
pt,m

Qt

]
+ (1 − Mt)pt,m + β

∂ER̄

[
V(ct+1)

]
∂bt

+ g′µµµ = 0, (7)

where g′µµµ denotes the inner product of the vector of constraint function derivatives

with the corresponding Lagrange multipliers.

Equation (7) shows how three market primitives–the supply elasticity ϵs, the co-

owned plants renewable output R̄t,j, and the congestion indicator Mt–generate owner-

ship specific operational incentives. When a standalone battery operates in a congested

market (Mt = 1), the operator internalizes only the price effect of its own utilization

on the arbitraging profits, captured by the term − 1
ϵs

bt pt,m
Qt

. When the battery is charging

(bt < 0), the term reflects the incremental cost of making stored electricity more expen-

sive; when the battery is discharging (bt > 0), it reflects the reduction in revenues from

selling previously stored electricity at a lower price.

By contrast, a co-owned battery operator also faces the additional term − 1
ϵs

R̄t,jpt,m
Qt

,

which captures the impact of battery utilization on renewable sales revenues. Charging

that raises off-peak prices increases the revenues earned on renewable output in that pe-

riod, while discharging that depresses peak prices reduces the revenues from renewable

sales. Thus, co-ownership creates an additional channel through which battery deci-

sions affect profits: the operator balances arbitrage revenues not only against the costs of

stored energy, but also against the induced change in renewable revenues across periods.

18



Calibration

I calibrate the model with Texas RTM data from 1 January to 30 December 2021. There

are three reasons to focus on this interval. First, during this year battery storage was

still limited to a handful of small projects used mainly in ancillary-service markets; in

the RTM, batteries were dispatched mostly during extreme price spikes. Secondly, aside

from the February Storm Uri event, 2021 reflects a return to normal, post-COVID load

patterns. Finally, it offers a representative picture of network stress: transmission-line

congestion occurred on roughly 70% of days.

To calibrate demand and supply, I use ERCOT’s “60-Day SCED Disclosure Reports”,

which provide plant-level data on bids and realized output at 15-minute intervals. In the

Real-Time Market (RTM), demand is assumed to be perfectly inelastic. Consequently, I

measure demand as the total electricity produced within the relevant market–either the

statewide system or the local market defined by congestion events.

Aggregate supply curves are constructed by combining thermal generators’ bid offers

with the realized output of renewable plants. Thermal generators can submit up to 35

price-quantity pairs in their offer curves, which I aggregate across units to form the

thermal supply schedule. For renewables, I assume that all available output is offered

at marginal cost. Wind generation is offered at -$31.5/MWh, reflecting eligibility for the

federal Production Tax Credit, while solar generation is offered at zero, consistent with

its negligible marginal cost and the absence of the subsidy.

Energy storage plays an increasingly important role in this environment. Battery

Energy Storage Systems (BESS), almost exclusively lithium-ion, are expanding rapidly

in Texas and are expected to rank second only to solar in capacity additions over the next

decade. To calibrate their characteristics, I use data on advanced-stage projects in Texas.

The resulting parameters imply a median capacity ratio of 0.35 relative to the associated

renewable plant, a median duration of 1.5 hours, and a round-trip efficiency of γ2 = 0.9.

Finally, To construct plant-specific local markets and define congestion events, I use

ERCOTs five-minute data on LMPs by Resource Nodes, Load Zones and Trading Hubs.

Local markets are defined by examining the pairwise differences in LMPs between the
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Group
Off-peak
Inelastic
Supply

Off-peak
Ren.

Output
N Batt.

Avg.
Storage
MWh

Avg.
Ren.
MW

Solar
%

Wind
%

Avg.
Loc. Mkt.

Size

1 Freq. High 17 73.8 140.6 58.8 41.2 21.4
2 Freq. Low 11 48.0 91.4 27.3 72.7 20.8
3 Infreq. High 11 41.5 79.1 54.5 45.5 13.6
4 Infreq. Low 18 63.2 120.4 72.2 27.8 24.5
5 Never Any 161 64.5 122.9 13.7 86.3 11.3

Notes: Column “Group” reports the group identifier. Group 1 = Frequent inelastic supply / high
renewable output, Group 2 = Frequent inelastic supply / low renewable output, Group 3 = Infrequent
inelastic supply / high renewable output, Group 4 = Infrequent inelastic supply / low renewable
output, Group 5 = Never inelastic supply curve. “N Batt.” is the number of simulated battery
in each group. “Avg. Storage MWh” is average battery capacity. “Avg. Ren. MW” is average
renewable capacity of the plant located at the same node of the battery. “% Solar and “% Wind”
indicate technology shares in each group. “Avg. Loc. Mkt. Size” is the average number of generating
resources in the local market in which batteries operate when transmission lines are congested.

Table 1: Summary statistics, by group.

node where the battery is assumed to operate and all other nodes across the year. This

procedure identifies the set of nodes whose prices move together, providing a market def-

inition specific to each plant. To identify congestion events, I analyze the cross-sectional

distribution of nodal LMPs in each period.

5 Results

In this section, I discuss the results from the simulated empirical model. I begin by

illustrating the operational incentives of standalone batteries and their effects on market

outcomes, such as consumer surplus. Next, I highlight the market conditions under

which co-owned batteries’ incentives diverge from the standalone case and examine the

implications of these differences for market outcomes.

To present results, I classify batteries into five groups according to the characteristics

of the nodes where they are located during congested periods. The classification relies

on two dimensions. First, how often the local supply curve is inelastic. I compute the

fraction of congested periods with inelastic supply at each node. Nodes are classified as

“frequent” if their fraction exceeds the cross-node median and “infrequent” otherwise.
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Group Daily
Cycles

Buy in
Uncong.

(%)

Sell in
Uncong.

(%)

∆ CS
($/MWh)

1 1.74 76.13 96.95 15,931

2 1.61 83.18 97.36 24,603

3 1.72 79.38 98.54 35,745

4 1.61 89.05 98.89 18,267

5 1.52 72.18 98.02 18,196

Notes: “Daily Cycles” reports the average number of com-
plete charge-discharge cycles per day. “Buy in Uncong.” is
the percentage of electricity purchased during uncongested
periods (the remainder is bought during congested periods).
“Sell in Uncong.” is the percentage of electricity sold dur-
ing uncongested periods (the remainder is sold during con-
gested periods). “∆ CS” reports the change in consumer
surplus in thousands of dollars per MWh of storage capac-
ity.

Table 2: Standalone battery operations and market
outcomes, by group

Second, how often during congested periods the renewable plant located at the battery’s

node produces above its median output computed across all fifteen-minute periods (con-

gested and non-congested). Groups 1 and 2 consist of nodes frequently exposed to

inelastic supply, distinguished by whether renewable output is typically high (Group 1)

or low (Group 2). Groups 3 and 4 are exposed to inelastic supply less frequently, again

separated by renewable output levels. Finally, Group 5 includes nodes that, when con-

gested, always face a perfectly elastic supply curve. Table 1 reports summary statistics

for each group.

Standalone Batteries Operations

Table 2 presents results on the behavior of standalone battery operators during the simu-

lated year. On average, batteries complete slightly more than one and a half full charge-

discharge cycles per day. Operators seeking to maximize arbitrage profits target uncon-

gested periods for both charging and discharging. Standalone batteries purchase most

of their electricity during uncongested periods (ranging from 72 to 89 percent across

groups). Operators target these periods because the supply curve is more elastic, im-
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plying that battery charging induces a negligible price increase. Group 5 exhibits the

highest share of electricity bought during congested periods. Batteries in this group op-

erate in areas where, during congestion, generating resources consist almost exclusively

of renewable plants, resulting in similarly elastic supply conditions whether congested

or not. Similarly, when discharging, standalone operators target uncongested peak peri-

ods, releasing 97 to 99 percent of stored electricity during these periods.

This batteries’ usage under standalone ownership generates gains in consumer sur-

plus by reducing the average cost of electricity across the day compared to the baseline

scenario without batteries. Batteries charge during off-peak periods and discharge dur-

ing peak periods, with most transactions occurring in uncongested periods. Because

peak periods are characterized by lower supply elasticity and higher perfectly inelastic

demand than off-peak periods, the reduction in electricity costs from discharging dur-

ing peak periods exceeds the increase in costs from charging during off-peak periods,

lowering average electricity costs and thereby increasing consumer surplus.

Co-owned Batteries Operations

Table 3 presents the operational patterns of co-owned batteries. Comparing with stan-

dalone operations, three key results emerge. First, co-owned batteries complete nearly

identical daily cycles, indicating that ownership does not substantially alter overall uti-

lization rates. Second, co-owned batteries in Groups 1 and 2, which more frequently face

inelastic supply curves during congested off-peak periods, shift the timing of approxi-

mately 2 percentage points of charging from uncongested to congested off-peak periods.

This reallocation reflects strategic charging incentives during congestion events to raise

off-peak prices and increase renewable revenues, discussed in detail below. Third, co-

owned batteries discharge even more electricity during uncongested peak hours than

standalone units–approximately 0.5 to 1 percentage point more across groups. This be-

havior stems from co-owned operators’ stronger incentive to avoid discharging during

congested peak periods, where the resulting price reduction would erode both battery

revenues and contemporaneous renewable sales revenues.
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Group Daily
Cycles

Buy in
Uncong.

(%)

Sell in
Uncong.

(%)

∆ CS
($/MWh)

1 1.75 74.40 97.65 14,296

2 1.62 82.25 97.70 23,622

3 1.72 79.11 98.60 35,837

4 1.62 88.48 99.03 17,925

5 1.52 72.13 97.99 18,228

Notes: “Daily Cycles” reports the average number of com-
plete charge-discharge cycles per day. “Buy in Uncong.”
is the percentage of electricity purchased during uncon-
gested periods (the remainder is bought during congested
periods). “Sell in Uncong.” is the percentage of electric-
ity sold during uncongested periods (the remainder is sold
during congested periods). “∆ CS” reports the change in
consumer surplus in thousands of dollars per MWh of stor-
age capacity.

Table 3: Co-owned battery operations and mar-
ket outcomes, by group

While co-owned batteries generate positive consumer surplus gains, these gains are

lower than those achieved under standalone ownership. The lower gains are explained

by the strategic reallocation of part of charging to congested off-peak periods, which

raises consumers’ electricity costs. Comparing Tables 2 and 3, the largest differences

occur in Groups 1 and 2, which are more frequently exposed to inelastic supply dur-

ing congested off-peak periods. Because most electricity continues to be traded during

uncongested periods–both for charging and discharging–the arbitrage mechanism that

benefits consumers remains intact. During congestion, co-owned batteries charge in lo-

cal markets with less elastic supply, inducing larger price increases per unit of electricity

purchased compared to standalone batteries charging in uncongested periods. Even

though local markets serve smaller demand than the system-wide market, the price im-

pact of charging is larger under congestion because supply inelasticity dominates the

market size effect. These larger price increases during off-peak charging raise electricity

costs more than the price increases from standalone charging, reducing overall consumer

surplus gains.
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Divergent Batteries Operational Incentives During Congested Off-peak Periods

The reallocation of charging to congested off-peak periods documented in Table 3 reflects

strategic behavior by co-owned operators. A key feature of the model is that batteries’

operators intenalize price variations only when transmission congestion creates local

markets with limited competition. In these periods, co-owned operators internalize how

charging raises off-peak prices and thereby increases the value of contemporaneous re-

newable output. Figure 4 illustrates how supply elasticity and renewable production

interact to generate these divergent operational incentives during congested off-peak

periods. I classify these periods into four groups based on the two factors that explain

differences in battery utilization across ownership: the elasticity of the local supply curve

and the level of renewable output from the co-owned plant.

Co-owned batteries systematically charge more than standalone units when they op-

erate in congested local markets with inelastic supply. Panel 4a shows that the gap

widens with renewable output: when plants operate at a high share of capacity, co-

owned batteries use about 7 percent more of their rated power than standalone units.

In these cases, co-owned charging also raises local off-peak prices, by up to $3/MWh

relative to the standalone case (Panel 4b). By contrast, when the local supply curve is

elastic (ϵs > 1), both the utilization difference and the associated price effects largely

disappear.

This pattern reflects the strategic behavior of co-owned operators, who deploy the

battery to raise off-peak prices and thereby increase renewable revenues. When supply

is inelastic, even modest charging pushes prices upward, boosting revenues on all re-

newable output sold in that period. Panels 4c and 4d illustrate this mechanism. When

renewable plants operate at a high share of their capacity co-ownership increases renew-

able sales revenues by as much as $80 per MWh of storage capacity, while charging costs

rise by up to $18. Because the revenue gains from renewable sales exceed the additional

storage costs, co-owned batteries find it profitable to sacrifice part of their arbitrage

margins in order to raise the overall profitability of the plant.
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(a) Average percentage difference in uti-
lized rated power (co-owned vs. stan-
dalone)

(b) Average difference in price (co-owned
vs. standalone)

(c) Average increase in Renewable sales
profit under co-ownership (co-owned vs.
standalone)

(d) Average difference in stored electricity
cost (co-owned vs. standalone)

Figure 4: Battery operational incentives
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Group ∆CSc
(1)

∆CSs
(2)

Πc
(3)

Πs
(4)

Subc
(5)

Subs
(6)

NBc
(7)

NBi
(8)

1 183 204 92 46 158 204 25 0.0
2 303 316 62 41 188 209 115 107

3 460 459 41 42 209 208 251 251

4 208 213 20 17 230 233 -22 -20

5 234 234 29 31 221 219 14 15

Notes: All amounts are in $1000s per MWh of storage capacity.
Columns (1)–(2) report the change in consumer surplus relative to the
no-battery baseline: ∆CSc for co-owned batteries, ∆CSs for standalone
batteries. Columns (3)–(4) report lifetime operating profits: Πc for co-
owned, Πs for standalone. Columns (5)–(6) report the subsidy required
for each ownership type to break even, assuming capital costs of $250k
per MWh. Columns (7)–(8) report net benefit from a battery operat-
ing in the market, defined as ∆CS − Sub. See Table 1 for definition of
groups.

Table 4: Consumer surplus and battery profitability, by
group (amounts in $1000s)

Consumer Surplus and Battery Profitability

The operational differences documented in the previous sections occur throughout the

simulated year. To assess their economic significance, I now examine their cumulative

impact on consumer surplus and battery profitability over a 20-year assumed battery

lifetime, without accounting for battery degradation.

Table 4 reports the change in consumer surplus from introducing a battery relative

to the no-battery baseline over a 20-year battery lifetime (columns 1 and 2). As expected,

batteries increase consumer surplus under both ownership structures, with each MWh

of capacity raising consumer surplus by roughly $200k to $500k.

Consistent with the operational patterns documented earlier, standalone batteries

generate larger cumulative gains than co-owned units in Groups 1 and 2. In Group 1,

standalone batteries raise consumer surplus by $204k compared with $183k under co-

ownership–a difference of $21k per MWh of capacity. In Group 2, the difference is $13k.

When inelastic supply is infrequent (Groups 3 and 4), the differences between ownership

types are negligible, and in Group 3 co-ownership delivers slightly higher gains.

While co-ownership dampens consumer surplus gains, it almost doubles battery prof-
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itability compared with standalone ownership. Standalone batteries earn profits solely

from arbitrage, whereas co-owned units also internalize the additional revenues gener-

ated by selling renewable output at higher off-peak prices once the battery is introduced.

Profitability of a co-ownerd battery is defined as the lifetime sum of arbitrage profits and

incremental renewable revenues relative to the no-battery baseline. Table 4 (columns 3

and 4) shows that strategic use of the battery under co-ownership substantially raises

earnings. In Group 1, lifetime profits reach $92k under co-ownership, against $46k for

standalone units. In Group 2, the advantage persists, though it is smaller ($62k versus

$41k). When inelastic supply is infrequent (Groups 3 and 4), the two ownership types

yield similar outcomes, with profitability of around $40k in both cases. These profitabil-

ity estimates reflect only arbitrage revenues from the energy market. Robertson et al.

(2025) documents that in ERCOT, batteries derive most revenues from ancillary services

markets, which are not modeled here, suggesting that actual battery profitability may be

substantially higher than these estimates.

Despite these differences, neither ownership regime delivers sufficient profits to cover

investment costs. Assuming capital expenditures of $250k per MWh1, projects require

subsidies to break even. Even under co-ownership, where profitability is highest, invest-

ment remains unviable at current cost levels.

Although investment is not privately viable, subsidizing batteries remains desirable

from consumers’ perspective. Under both ownership structures, the discounted increase

in consumer surplus exceeds the subsidy required, so the net benefit of battery deploy-

ment remains positive. The only exception is Group 4, where net benefit is slightly

negative under both ownership structures. This result reflects the missing money prob-

lem discussed by Joskow (2008), namely the tendency of energy-only electricity markets

to generate revenues that are too low to sustain investments which, while beneficial from

the consumers’ point of view, are not privately profitable.

Importantly, even though co-ownership yields lower net benefits per project, more co-

owned batteries become viable at moderate subsidy rates. Figure 5 illustrates this trade-

1The benchmark capital cost is based on BloombergNEF data and on Ziegler, M. S., and Trancik, J. E.,
“Re-examining rates of lithium-ion battery technology improvement and cost decline,” Energy & Environ-
mental Science, 2021.
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(a) Number of profitable batteries, by own-
ership and subsidy rate

(b) Distribution of profitable batteries’ net
benefit, by ownership and subsidy rate

Figure 5: Battery profitability by subsidy rate and ownership type

off. Panel 5a displays the number of simulations in which batteries become profitable

as a function of the subsidy rate, expressed as a percentage of capital costs. For subsidy

rates below 80 percent, the number of profitable co-owned batteries across simulations

is substantially higher than that of standalone batteries, reflecting the strategic utiliza-

tion of co-owned batteries. Panel 5b shows the distribution of net benefits—consumer

surplus gains minus subsidy costs–for viable batteries at each subsidy rate. While more

co-owned batteries are profitable at moderate subsidy rates, once standalone batteries

becomes profitable they have a higher median net benefits per project.

6 Conclusion

This paper examines how ownership structure shapes battery operation and market out-

comes in ERCOT. I develop a simple model that isolates three primitives–transmission

congestion occurence, the elasticity of supply and the timing of renewable output–and

embed it in a day-long dynamic simulation calibrated to ERCOT’s 2021 Real-Time Mar-

ket.

The first result is that co-ownership changes operational incentives. When congestion

fragments the grid into local markets with inelastic supply, co-owned operators internal-

ize the price effect of charging on contemporaneous renewable revenues and therefore

store more energy. By contrast, peak-period behavior is largely uniform across owner-
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ship because batteries discharge mostly in uncongested periods, when operators do not

internalize price effects.

Strategic charging under co-ownership reduces gains in consumer surplus relative

to standalone batteries, as consumers face higher prices during congested off-peak peri-

ods. At the same time, profitability is substantially higher under co-ownership because

operators capture not only arbitrage revenues but also additional renewable revenues

generated by the higher off-peak prices.

These findings carry three implications for policy design. First, storage is not pri-

vately profitable on average at assumed capital costs, so investments would not occur

without external support. Second, from the consumers’ perspective, subsidizing batter-

ies is desirable under both ownership structures, since the present value of consumer

surplus gains typically exceeds the subsidies required, reflecting the classic missing

money problem in energy-only markets. Third, because co-ownership raises profitability,

a given subsidy rate makes more batteries viable than under standalone ownership.

One caveat qualifies these conclusions. The analysis places batteries at nodes with

renewable plants, consistent with typical co-owned siting, but standalone projects in

practice could choose locations more freely–for example, at major load centers. This

restriction may understate the relative advantage of standalone ownership.

In sum, who owns the battery matters when the grid is frequently locally constrained.

Co-ownership confers a lever to affect price and increase renewable production value,

boosting plants’ profitability but dampening gross consumer gains; standalone opera-

tion preserves larger gross consumer benefits but requires more subsidy support. These

findings highlight that ownership design is central to determining how storage interacts

with electricity markets. By shaping both operational incentives and the distribution of

benefits between consumers and investors, ownership structure becomes a key consider-

ation for subsidy policy and market regulation.
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Appendix

A1 Identifying Local Markets During Transmission Con-

gestion

In the empirical model, I assume that when transmission constraints bind, the electricity

market fragments into multiple local markets. This section describes the procedure used

to identify which nodes operate in the same local market during congested periods.

A1.1 Methodology

The identification strategy exploits variation in Locational Marginal Prices (LMPs) to

determine market boundaries. When transmission constraints do not bind, the market

operates as a single integrated system and LMPs converge across all nodes. However,

when congestion occurs, transmission constraints prevent electricity from flowing freely

across the network, causing LMPs to diverge across regions. Nodes that remain price-

coupled during congestion–indicated by similar LMPs–operate in the same local market.

For each node i in the ERCOT network, I identify the subset of nodes that operate in

the same local market during congested periods using the following procedure:

Step 1: Computing pairwise price differences. Using five-minute interval LMP data

for all nodes throughout 2021, I compute the absolute LMP difference for every pair of

nodes (i, j) at each time interval t:

∆LMPij,t = |LMPi,t − LMPj,t|

Step 2: Identifying co-location events. Following Woerman (2019), I classify two

nodes as operating in the same market when their LMP difference is less than $1/MWh.

For each pair of nodes, I count the number of five-minute intervals in which this condi-

tion holds:

Nij =
T

∑
t=1

1(∆LMPij,t < 1)
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where T represents all five-minute intervals in 2021 and 1(·) is an indicator function.

Step 3: Defining local market membership. The procedure in Step 2 generates a

symmetric matrix N of dimension n × n, where n is the number of nodes in the network.

Each element Nij represents the number of times nodes i and j operated in the same

market throughout the year. I then apply a threshold τ such that node j is considered

part of node i’s local market during congestion if:

Nij ≥ τ

Step 4: Geographic validation. To verify that identified local markets reflect gen-

uine transmission constraints rather than spurious price correlations, I compute the geo-

graphic distance between all node pairs classified as operating in the same local market.

Nodes separated by distances exceeding a thershold δ (in kilometers) are excluded from

the local market definition, as such large distances would be inconsistent with binding

transmission constraints creating localized price differences.

A2 Identifying Transmission Line Congestion Events

This section describes the procedure used to identify periods when transmission con-

straints bind and isolate local markets from the rest of the ERCOT system. The iden-

tification strategy exploits price differentials between nodes within a local market and

nodes in the broader system to detect when transmission congestion fragments the grid.

A2.1 Methodology

For each fifteen-minute interval t and each node i where a battery is simulated, I imple-

ment the following procedure:

Step 1: Define the local market. Using the local market definitions constructed in

Appendix A1, I identify the set of nodes Li that operate in the same local market as

node i during congested periods. This set includes all nodes j for which the co-location

frequency Nij exceeds the threshold τ established in the previous section.
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Step 2: Compute local market price. I calculate the median Settlement Point Price

(observed prices use by ERCOT to settle electricity transaction) across all nodes in the

local market at time t:

plocal
i,t = medianj∈Li{LMPj,t}

The median is used rather than the mean to ensure robustness to outlier prices that may

occur at individual nodes due to measurement error or highly localized constraints.

Step 3: Define the external market. To determine whether the local market is sep-

arated from the rest of the system, I identify a set of geographically proximate nodes

that are not part of the local market. First, I compute the geographic center of the local

market as the median longitude and latitude across all nodes in Li:

(loncenter
i , latcenter

i ) =
(
medianj∈Li{lonj}, medianj∈Li{latj}

)
I then construct the external market set Ei consisting of all nodes that are (1) not in the

local market (j /∈ Li) and (2) located within 200 kilometers of the local market center.

The 200-kilometer radius ensures that the comparison reflects nearby market conditions

while excluding nodes too distant to be affected by the same transmission constraints.

Step 4: Compute external market price. I calculate the median LMP across nodes in

the external market:

pexternal
i,t = medianj∈Ei{LMPj,t}

Step 5: Identify congestion events. Transmission constraints are classified as binding

at node i during period t if the absolute price difference between the local and external

markets exceeds a threshold π:

Congestedi,t = 1
(
|plocal

i,t − pexternal
i,t | > π

)
This threshold is chosen to identify periods when transmission constraints create eco-

nomically meaningful price separations while filtering out small price differences that

may reflect normal within-market variation rather than binding constraints.
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